
HPF Implementation of NPB2.3

Michael Frumkin, Haoqiang Jin, Jerry Yan*

Numerical Aerospace Simulation Systems Division
NASA Ames Research Center

Abstract

We present an HPF implementation of BT, SP, LU, FT, CG and MG of NPB2.3-serial bench-

mark set. The implementation is based on HPF performance model of the benchmark spe-
cific primitive operations with distributed arrays. We present profiling and performance
data on SGI Origin 2000 and compare the results with NPB2.3. We discuss an advantages
and limitations of HPF and pghpf compiler.

1. Introduction

The goal of this study is an evaluation of High Performance Fortran (HPF) as a choice

for machine independent parallelization of aerophysics applications. These applications

can be characterized as numerically intensive computations on a set of 3D grids with local

access patterns to each grid and global synchronization of boundary conditions over the

grid set. In this paper we limited our study to six NAS benchmarks: simulated applica-

tions BT, SP, LU and kernel benchmarks FT, CG and MG, [2].

HPF provides us with a data parallel model of computations [8], sometimes referred

also as SPMD model [12]. In this model calculations are performed concurrently with

data distributed across processors. Each processor processes the segment of data which it

owns. The sections of distributed data can be processed in parallel if there are no depen-

dencies between them.

The data parallel model of HPF appears to be a good paradigm for aerophysics appli-

cations working with 3D grids. A decomposition of grids into independent sections of

closely located points followed by a distribution of these sections across processors

would fit into the HPF model. In order to be processed efficiently these sections should

be well balanced in size, should be independent and should be regular. In our implemen-

tation of the benchmarks we addressed these issues and suggested data distributions sat-

isfying these requirements.

"MRJ Technology Solutions, Inc. M/S T27A-2, NASA Ames Research Center, Moffett Field, CA 94035-1000; e-maih
{frumkin,hjin}Onas.nasa.gov, jyan@mail.arc.nasa.gov

HPF has a limitation in expressing pipelined computations which are essential for

parallel processing of distributed data having dependencies between sections. This limi-

tation obliges us to keep a scratch array with an alternate distribution and redistribute

codependent data onto the same processor to perform parallel computations (see sections

on BT, SP and FT).

A practical evaluation of the HPF versions of benchmarks was done with the Portland

Group pghpf 2.4 compiler [12] on SGI Origin 2000 (the only HPF compiler available

to us at the time of writing). In the course of the implementation we had to address several

technical problems: overhead introduced by the compiler, unknown performance of op-

erations with distributed arrays, additional memory required for storing arrays with an

alternative distribution. To address these problems we built an empirical HPF perfor-

mance model, see Section 3. In this respect our experience confirms two known problems

with HPF compilers [11],[4]: lack of theoretical performance model and the simplicity of

overlooking programming constructs causing poor code performance. A significant ad-

vantage of using HPF is that the conversion from F77 to HPF results in a well structured

easily maintained portable program. An HPF code can be developed on one machine and

ran on another (more then 50% of our development was done on NAS Pentium cluster

Whitney).

In section 2 we consider a spectrum of choices HPF gives for-code parallelization and

build an empirical HPF performance model in section 3. In section 4 we characterize the

algorithmic nature of BT, SP, LU, FT, CG and MG benchmarks and describe an HPF im-

plementation each of them. In section 5 we compare our performance results with

NPB2.3. Related work and conclusions are discussed in section 6.

2. HPF Programming Paradigm

In the data parallel model of HPF calculations are performed concurrently over data

distributed across processors*. Each processor processes the segment of data which it

owns. In many cases HPF compiler can detect concurrency of calculations with distribut-

"The expression "data distributed across processors" commonly used in papers on HPF is not very precise since data

resides in memory. This expression can be confusing for shared memory machine. The use of this expression assumes

that there is a mapping of memory to processors.

ed data. HPF advises a two level strategy for data distribution. First, arrays should be

coaligned with ALIGN directive. Then each group of coaligned arrays should be distrib-

uted onto abstract processors with the DISTRIBUTE directive.

HPF has several ways to express parallelism: f90 style of array expressions, FORALL

and WHERE constructs, INDEPENDENT directive and HPF library intrinsics [9]. In array

expressions operations are performed concurrently with segments of data owned by a

processor. The compiler takes care on communicating data between processors if neces-

sary. FORALL statement performs computations for all values of the index (indices) of

the statement without guarantying any particular ordering of the indices. It can be con-

sidered as a generalization of f90 array assignment statement.

INDEPENDENT directive states that there is no dependencies between different iter-

ations of a loop and the iterations can be performed concurrently. In particular it asserts

that Bernstein's conditions are satisfied: set of read and written memory locations on dif-

ferent loop iterations don't overlap and no memory location is written on different loop

iterations, see [8], p. 193. All loop variables which do not satisfy the condition should be

declared as new and are replicated by the compiler in order the loop to be parallelized.

Many HPF intrinsic library routines work with arrays and are executed in parallel.

For example, random_number subroutine initializes an array of random numbers in par-

allel with the same result as a sequential subroutine compute ini t ial condi t ions

of FT. Other examples are intrinsic reduction and prefix functions.

3. Empirical HPF Performance Model

The concurrency provided by HPF does not come for free. The compiler introduces

overhead related to processing of distributed arrays. There are several types of the over-

head: creating communication calls, implementing independent loops, creating tempo-

raries and accessing distributed arrays elements. The communication overhead is

associated with requests of elements residing on different processors when they are nec-

essary for evaluation of an expression with distributed arrays or executing an iteration of

an independent loop. Some communications can be determined in the compile time other

can be determined only in run time causing extra copying and scheduling of communi-

cations, see[12], section 6.As anextremecasethe calculation canbescalarized and result

in a significant slowdown.

The implementation of independent loops in pghpf isbasedon assignmentof ahome

array to eachindependent loop that is anarray relative to which loop iterations are local-

ized. The compiler selectsa home array from array referenceswithin the loop or creates

a new template for the home array. If there are arrays which are not aligned with the

home array they arecopied into a temporary array. It involves allocating/deallocating of

the temporaries on eachexecution of the loop. A additional overhead associatedwith the

transformations on the loop which the compiler has to perform to ensure its correct par-

allel execution.

Temporaries can be created when passing a distributed array to a subroutine. All

temporarily created arrays must be properly distributed to reduce the amount of the

copying. Inappropriate balanceof the computation/copy operations cancausenoticeable

slowdown of the program.

The immanent reasonof the overhead is that HPF hides the internal representation

of distributed arrays. It eliminates the programming effort necessaryfor coordinating

processorsand keeping distributed data in acoherentstate.Thecost of this simplification

is that the user does not have a consistentperformance model of concurrent HPF con-

structs. The pghpf compiler from Portland Group has a number of ways to convey the

information about expectedand actual performance to the user. It has flags -Minfo for

the former, -Mprof for the later and -Mkeepftn for keeping the intermediate FOR-

TRAN code for the user examination. The pghpf USER'sguide partially addresses the

performance problem by apartial discloserof the implementation of theINDEPENDENT

directive and of distributed array operations, cf. [12], Section7.

To compensatefor lack of a theoreticalHPFperformance model and to quantify com-

piler overhead we have built an empirical performance model. We have analyzed NPB,

compiled a list of array operations used in the benchmarks and then extracted a set of

primitive operations upon which they canbe implemented. We measured performance

of the primitive operations with distributed arraysand used the resultsasa guide in HPF

implementations of NPB.

We distinguish 5 types of primitive operations with distributed arrays, as summa-

4

rized in Table 1:

• loading/storing a distributed array and copying it to another distributed array

with the sameor a different distribution (includes shift, transposeand redistri-

bution operations),

• filtering a distributed array with a local kernel (the kernel canbe first or second

order stencil asin BT,SPand LU or 3x3x3 kernel of the smoothing operator as in

MG),

• matrix vector multiplication of aset of 5x5 matrices organized as3D array by a

set of 5D vectors organized in the sameway (manipulation with 3D arrays of 5D

vectors is a common CFD operation),

• passing a distributed array asanargument to a subroutine,

• performing a reduction sum.

We used 5 operations of the first group including: (1)assignment values to a nondis-

tributed array, (2)assignmentvalues to adistributed array, (3)assignmentvalues to adis-

tributed array with a loop along a nondistributed dimension declared asindependent, (4)

shift of a distributed array along adistributed dimension and (5)copy of adistributed ar-

ray to an array distributed along anotherdimension (redistribution). In the second group

we used filtering with the first order (4point) finite difference stencil and the second or-

der (7point) finite difference stencil. We used both the loop syntax and the array syntax

for implementation. In the third group we used2 variants of matrix vector multiplication:

(10) the standard and (11)with the internal loop unrolled. In the forth group we have

passed2D section of 5D array to a subroutine. (This group appeared to bevery slow and

we did not include it into the table). The last group includes: (12)reduction sum of a 5D

array to a 3D array and (13)reduction sum.

All arrays in our implementations of theseprimitive operations are 101x101x101ar-

rays (odd block sizeswere chosento reducethe cash related effects)of double precision

numbers, 5Dvectors and of 5x5matrices.We used BLOCKdistribution only. The profiling

results of theseoperations, compiled with pghpf and ran on SGI Origin 2000,are given

in the Table 1.The execution time of the first operation compiled for single processorwas

chosenasa basetime in eachgroup.

We can suggestsomeconclusions from the profiling data.

• Execution of a sequential codeslows down asthe number of processors grows

(line 1).

• Distribution of an array canhave a significant penalty (f90 vs. column 1). For

example INDEPENDENT directive causesthe loop to becompiled for symbolic

number of processorsand the its bounds have to be localized causing some

overhead.

• An inappropriate placementof independent directive confusesthe compiler and

slows down the program (line 3).

• Efficiency of someparallel operations is closeto 1 (lines 6 and 11)while other

have efficiency less then 0.5 (lines2 and 4).

• Replacing loops with array assignmentspeedsup the sequentialprogram (line 7

and 9 vs. line 6 and 8)but hasnoeffectonparallel performance. Warning: pghpf

doesnot parallelize independent loops with nonelemental assignments.

• loop unrolling doesnot effectperformance (line 11vs. line 10). In pghpf 2.2the

difference was larger than a factor of 3 for more than 8 processors.

• Thesmaller number of dimensions are reduced the better scalesthe operation

(line 12vs. line 13)

• Passingarray sectionsasargumentsareanorder of magnitude slower then pass-

ing the whole array (not included in the table).

We have used the model to choosethe particular way to implement operations with

distributed arrays. For example,we haveused anarray syntax instead of loops in the cas-

es where communications were required (suchas calculating differences along the dis-

tributed direction). Also we have inlined subroutines called inside of loops with sections

of distributed arrays asarguments. We have parallelized a loop even if it looked like the

loop performs a small amount of computations and should not effect the total computa-

tion time (seeconclusion 1).

Operation Name_nprocs

Single

Proc

5. Redistribution

6. First order stencil sum

7. First order stencil sum (array

syntax)

8. Second order stencil sum

9. Second order stencil sum (array

syntax)

10. Matrix vector multiplication

1. Serial assignment 1.00

2. Distributed assignment 1.23

3. Distributed assignment + INDE- 0.89

PENDENT

4. Distributed shift 1.34

1.34

1.00

0.72

1 2 4 8 16 32

1.27 1.37 1.52 1.56 2.99 3.06

1.27 0.68 0.37 0.18 0.10 0.04

8.82 5.44 2.89 1.24 0.90 0.58

2.59 1.93 1.10 0.69 0.65 0.62

1.00 1.21 0.93 0.41 0.30 0.24

1.55 0.77 0.24 0.10 0.05 0.03

1.55 0.80 0.24 0.09 0.05 0.03

1.09 1.94 0.97 0.34 0.14 0.07 0.03

0.85 2.18 1.05 0.38 0.16 0.07 0.03

1.00

11. Matrix vector mult. with internal 1.23

loop unrolled

12.5D to 3D reduction sum 1.00

13. Reduction sum 9.83

1.45 0.67 0.43 0.13 0.11 0.05

1,49 0.69 0.44 0.14 0.11 0.05

1.44 0.77 0.42 0.22 0.15 0.06

2,19 1.16 0.60 0.39 0.19 0.10

TABLE 1. Relative time of basic operations on SGI Origin 2000. The column labeled as

"Single Proc" lists the results of the program compiled with a flag -Mf90 and ran on a

single processor. This removes overhead of handling of distributed arrays. All other

columns list results of the program compiled for a symbolic number of processors and

ran on the specified number of processors.

We used pgprof and internal NPB timer for profiling the code. The pgprof allows to

display time spent in subroutines or lines of the code per each processor. To get the pro-

filing data the code should be compiled with -gpro f= 1 ines or -Mprof = func flag. The

profiler also allows to display the number and the total size of messages. The profiling

involves a significant overhead and can not be used for profiling of large programs. For

profiling of the benchmarks we used internal timer supplied with NPB. The timer is serial

and can be accessed at synchronization points only which makes it unsuitable for a fine

grain profiling such as processor load variation.

4. HPF Implementation of NAS Benchmarks

NAS Parallel Benchmarks consist of eight benchmark problems (five kernels and

three simulated CFD applications) derived from important classes of aerophysics appli-

cations [2]. The NPB2.3 suite contains MPI implementation of the benchmarks which

have good performance on multiple platforms and are considered as a reference imple-

mentation. The NPB2.3-serial suite is intended to be starting points for the development

of both shared memory and distributed memory versions, for the testing parallelization

tools, and also as single processor benchmarks. We have not included HPF version of EP

since we don't expect to get any useful data on HPF performance from EP. We have not

included HPF version of C benchmark IS either as well.

We took NPB2.3-serial as a basis for HPF version. We used our empirical HPF perfor-

mance model as a guide for achieving performance of HPF code. Also we relied on the

compiler generated messages regarding the information on loop parallelization and

warnings about expensive communications. We used standard HPF directives (actually

a very limited basic subset of the directives) as specified in [7].

We limited ourselves with moderate modifications of the serial versions such as in-

serting HPF directives, writing interfaces, interchanging loops and depth-1 loop unroll-

ing. In a sense the resulting code is f77, code modernized with f90 syntax and HPF

directives rather then pure HPF code. We avoided significant changes such as inlineing,

removing arrays from common blocks and passing them as subroutines arguments. We

avoided usage of optimized low level linear algebra and FFT library subroutines. In our

explanation of the code we refer to NPB2.3-serial FORTRAN code.

The source code of NPB can be found in NAS parallel benchmarks home page

http: / / science.nas.nasa, gov / Software / NPB. The page also contains links to HPF imple-

mentations of NPB by Portland Group and by Advanced Parallel Research. An extensive

data on NPB performance can be found in T. Faulkner's home page: http://sci-

ence.nas.nasa.gov/-faulkner. A comparison of different approaches to parallelization of

NPB is given in [5].

Benchmarks BT, SP and LU are solving a 3D discretization of Navier-Stokes equation

Ku = r (1)

where u and r are 5D vectors defined in the points of 3D rectangular grid and K is a 7 di-

agonal block matrix of 5x5 blocks. The three benchmarks differ in splitting the matrix K.

The FT performs FFT of a 3D array, CG solves a sparse system of linear equations by the

conjugated gradient method, and MG solves a discrete Poisson problem on a 3D grid by

the V-cycle multigrid algorithm.

4.1 BT Benchmark

BT uses Alternating Direction Implicit (ADI) approximate factorization of the opera-

tor of equation (1):

K = BT x • BTy. BT z

where BTx, BTy and BT z are block tridiagonal matrices of 5x5 blocks if grid points are enu-

merated in an appropriate direction. The resulting system then solved by solving the

block tridiagonal systems in x-, y- and z-directions sequentially. The main iteration loop

of BT starts from the computation of r (corapute_rhs) followed by sequential inversion

of BT x, BTy and BT z (x_solve, y_solve and z_solve) and is concluded with up-

dating of the main variable u (add).

Each subroutine x_solve, y_solve and z_solve solves a second order recur-

rence in the appropriate direction. These computations can be done concurrently for all

grid lines parallel to an appropriate axis while the computation along each line is sequen-

tial. A concurrency in x_solve and y_solve can be achieved by distributing the grid

along z-direction. This distribution, however, would preclude concurrency in zsolve

9

since HPF can not organize processors to work in a pipelined mode. In order for z_s o lye

to work in parallel the grid has to be redistributed along x- or y-direction or both.

In our HPF implementation of BT the subroutines compute_rhs, x solve,

y_solve and add work with u, rhs and lhs distributed blockwise along z-direction.

The subroutine zsolve works with rhsz and lhsz distributed blockwise along y-di-

rection. The redistribution of rhs to rhsz is performed at the entrance to zsolve and

back redistribution is performed upon exit from zso lye. The redistribution u z =u per-

formed just before calculation of lhs z.

The main loop in x_solve (symmetrically y_solve and z_solve) for each grid point

calls 5x5 matrix multiplication, 5x5 matrix inversion and 5x5 matrix by 5 dimensional vec-

tor multiplication. Using pgprof we found that the calls had generated too much over-

head probably related to passing a section of a distributed array to a subroutine. These

subroutines were inlined and the external loop was unrolled. This reduced the execution

time by a factor of 2.9 on up to 8 processors. For a larger number of nodes scaling comes

into effect and reduction is less.

The inlineing and loop unrolling made internal loop of x_solve too complicated and

the compiler message indicated that it was not been able to parallelize the loop. The IN-

DEPENDENT directive was sufficient for parallelization of the loop, however it intro-

duced an overhead which caused the program run 1.85 times slower on single processor

relative to the program compiled with -Mr 9 0 flag.

Note that two dimensional distributions of gridz and/or gridy would not give any

reduction in computation to communication ratio. Opposite, it would require to redistrib-

ute data three times per iteration and would resulted in a slower program.

The profile of main BT subroutines is shown on Figure 1. The subroutines which not

involve redistribution and/or communications scale down nicely. The communication

during the computations of fluxes and dissipation in z-direction effects scaling of rhs.

The redistribution time essentially stays constant with the number of processors and is re-

sponsible for dropping of the efficiency for more then 8 processors.

10

1111
10

10 °

3 ...

! i
10 i]_totM [

" _ i [-_- redist I

" _ i I.-._.. rhs I

: I-"- xsolve I
- _ i [-at- ysolve [

2 _ i } _ zsolve [

10 ___ .. l "_ I....................

. • _

lO =_'--- -:

...!..
-- ÷.

{ "_-÷

1

101

Number of processors

FIGURE 1. BT profile on Origin 2000. Note that rhs does not scale well since it involves

communications when computing the flux and the dissipation in z-direction. The

redistribution diminishes the efficiency of the processors utilization as the number of

processors grows.

4.2 SP Benchmark

SP uses the Beam-Warming approximate factorization of the operator of equation (1):

• . -i T-1
K__ T x. Px. Tx l " Ty Py Ty . T z . Pz. z

where T x, Ty and T z are block diagonal matrices of 5x5 blocks, Px, Py and Pz are block pen-

tadiagonal matrices of 5x5 diagonal blocks. The resulting system then solved by inverting

block diagonal matrices Tx, r_ 1- Ty, T/• T z and Zz I and solving the block pentadiagonal

systems.

The main iteration loop of SP is similar to one of BT. It starts with the computation of

rhs which is almost identical to compute_rhs in BT followed by the interleaved inver-

11

sion of block diagonal and block pentadiagonal matrices and is concluded with updat-

ing of the main variable u (add). The main iteration loop of SP is shown in Figure 2.

do step : l,niter

call compute_rhs

call txinvr

call x_solve

call ninvr

call y_solve

call pinvr

call z_solve

call tzetar

call add

end do

FIGURE 2. The main iteration loop of SP

Parallelization of SP is similar to the parallelization of BT: all subroutines except

zsolve operate with data distributed blockwise along z-direction. The subroutine

z s o lye works with data distributed blockwise along y-direction. The redistribution of

rhs and of few auxiliary arrays is performed at the entrance to z_solve and back redis-

tribution of rhs is performed on the exit from zsolve. As in BT a 2D distributions

would require more redistributions and would slow down the benchmark.

Profile of SP (see Figure 3) suggests few conclusions. The dominant factor of the com-

puting time is the computation of rhs and the redistribution. The redistribution time

vary slightly with the number of processors and is the major factor effecting scaling of the

benchmark. The communications involved in compute rhs in z-direction also effect the

scaling. The solution of the system takes much less time than these two operations and

scales well.

12

3 ..

i I --41_-- rhsy [
] _ _ I -Ill- rhsz [

. _ 2_ _ !........................... I "-)<-" xsolve I"
IU]:_._ "_ i |--I-- ysolve |

Z-':"--?:--:.t::=:=
I_ '_f:7,7,: :.:d._÷._ / i..

10!::*::::::_:_.'..Z."-.: "--_ 41"--'====--=====11
: ::::;:."''::_..:_-k ._

..... I.... "":':" ._._
..... ""'_ "_a_-.,._

10 ...i...................... ::::::::......._"_

-1
10 "

10 ° 101

Number of processors

FIGURE 3. SP profile on SGI Origin 2000. The redistribution and communications in

rhs z effect scaling of SP.

4.3 LU Benchmark

LU implements a version of SSOR algorithm by splitting of the operator of equation

(1) into a product of lower triangular matrix and upper triangular matrix:

K _=o(2 - CO)(D + coY)(I + coD-1Z)

where co is a relaxation parameter, D is the main block diagonal of K, Y is three sub block

diagonals and Z is three super block diagonals. The system is solved by computing of el-

ements of the triangular matrices (subroutines j ac ld and j acu) and solving the lower

and the upper triangular system (subroutines b l ¢ s and but s).

The ssor is implemented as a sequence of sweeping of the horizontal planes of the

grid, see Figure 4.

13

DO k = 2, nz -i

call jacld(k)

call blts(k)

END DO

DO k = nz - I, 2,

call jacu(k)

call buts(k)

END DO

call add

call rhs

-i

FIGURE 4. SP implementation of s sor subroutine.

The subroutines j ac ld, j acu, add and rhs are completely parallel meaning that

operations can be performed concurrently in all grid points. Both bl t s and buts have a

limited parallelism because processing of an (i,j,k) grid point depends on the values in the

points (i+e,j,k), (i,j+e,k) and (i,j,k+e), where e = -1 for blts and e = 1 for buts. The small

amount of work on each parallel step would cause too many messages to be sent. A meth-

od of increasing parallelism and of reduction of the number of messages is given in Hy-

perplane Algorithm [3] and we decided to choose this algorithm for HPF implementation.

In the Hyperplane Algorithm computations are performed along the planes i+j+k=m,

where m is plane number, m = 6,..,nx+ny+nz-3. For calculation of the values on each plane

values from the previous plane (lower triangular system) or from the next plane (upper

triangular system) are used.

In the Hyperplane Algorithm the external loop on k was replaced by the loop on the

plane number m, and j-loop bounds became functions of m and/-loop bounds became

functions of m and j and k is computed as k = m-i-j. These loop bounds were taken from

precalculated arrays.

Parallelization of LU was done by distribution of arrays blockwise along j-direction.

An advantage of LU relative to BT and SP is that no redistributions are necessary. A dis-

advantage is that plane grid points are distributed not evenly across processors causing

load imbalance. A 2D distribution could not be handled by the compiler efficiently. (The

problem was in assigning of an appropriate home array to a nest of two independent

loops with variable loop bounds.)

Profile of LU is shown in Figure 5. Low efficiency of LU resulted from two sources: a

14

large number of relatively small messages have to be sent after each iteration of m loop,

and a poor load balancing.

3 ...

10

10

10

bits
- .¢- - buts

.... _'_'''''_.. ..-_.. jacld-¢--. jacud
-_- lu

....... ----n--- rhs

.. _:_-a._:_. _............. _...'_..

_ _.o _. i "_'_,t ._'_"

. . .. o.., • _-..; ._'.....................

0

10 '
10 ° 101

Number of processors

FIGURE 5. LU profile on SGI Origin 2000

4.4 FT Benchmark

FT implements FFT of a 3D array. The transformation can be formulated as a matrix

vector multiplication:

v = (F m®F n®Fk)u

where u and v are 3D arrays of dimensions (m,n,k) represented as vectors of dimensions

mxnxk and F l, l=m,n,k is an FFT matrix of the order I*. The algorithm is based on factoriza-

tion of the FFT matrix:

F m®F n®F k = (I m®I nQFk)(l mQF n®Ik)(F m®I n®I k)

where I I , I=m,n,k is the identity matrix of the order I. Multiplication of each factor by a

vector is equivalent to FFT of the array in one dimension, henceforth FT performs FFTs in

"Here A ® B is a block matrix with blocks aijB and is called a tensor product of A and B

15

x-, y- and z- directions successively. The core FFT in one direction is implemented as a

Shwarztrauber's vectorization of Stockham autosorting algorithm performing indepen-

dent FFTs over sets of vectors. The number of vectors in the sets are chosen to fit the sets

into the primary cash of the Origin 2000.

For HPF implementation we distributed u blockwise in z-direction, perform FFTs in

x-direction, transpose the array, perform FFT in y-direction, redistribute the array along

y-direction and perform FFT in z-direction. The loops with FFTs in one direction calling

pure Swarztrauber subroutine were declared as INDEPENDENT. The transposition and

redistribution operations were converted by pghpf compiler to FORALL statements au-

tomatically given -Mautopar flag so that INDEPENDENT directives were unnecessary

for these loops.

Note the significant difference between transposition and redistribution. The trans-

position operation involves reading an array columnwise and writing it rowwise and as-

sumes that these dimensions are not distributed. The transposition does not involve

communications. The redistribution copies between two arrays with different distribu-

tions and usually requires all-to-all communications. The difference between transposi-

tion and redistribution is not as significant on shared memory machines as on distributed

memory machines.

Note also that iterations of FT are independent since the result of one iteration is not

used for the next one. Neither our HPF version of FT nor NPB2.3 version take the advan-

tage of this level of parallelism.

Profile of FT, see Figure 6, shows that the core FFT computations consume about 50%

of total time and scale down well with the number of processors. The redistribution and

transposition don't scale down as consistent as the core calculations reducing the efficien-

cy of the benchmark on large number of processors.

16

3 ..

10 I ftHPF

-] - -*-- redistr

-] ..-a-.. coreFFT
/ - ,,-. transpose

2._1 ...

&... i
10

l

10_

O_

10

-I

10
10 °

_..e- "'%...°.

...................... ¢,,...:._ "..'7.'_.'_.t.., _ _ ;_ k: ' " ;:" : z , . . , :,a: :"

: _4b,..

+ f + i i +

lO 1

Number of processors

FIGURE 6. FT profile on SGI Origin 2000.

4.5 CG Benchmark

CG is different from the other benchmarks since it works with a large sparse unstruc-

tured matrix. CG estimates the largest eigenvalue of a symmetric positive definite sparse

matrix by the inverse power method. The core of CG is a solution of sparse system of lin-

ear equations by iterations of the conjugate gradient method:
T

q=Ap, d=p q

ot = P- z = z + o_p, r = r-ocq
d"

T _ p
P0 = P' P = r r,l_ - --,p = r+_Jp

P0

The main iteration loop contains one sparse matrix vector multiplication, two reduc-

17

tion sums, three daxpy operations and a few scalar operations. The most expensive op-

eration of the algorithm is the sparse matrix vector multiplication q = Ap. Nonzero

elements of A are stored row by row in a compressed format. The column indices of ma-

trix elements are stored in a separate array colidx.

The matrix vector multiplication and daxpy operations are parallel. In our HPF im-

plementation we distribute z,q,r, and x and replicate A, p and col idx. It allowed to per-

form matrix vector operation in parallel, however the dax_y operations were performed

with vectors having different distributions. This distribution gave us the best perfor-

mance results of all other distributions we have tried.

The replication of A will cause problems if A will not fit into memory of one proces-

sor. On each processor only a small number of rows of A are used to calculate the section

of q distributed onto the processor. The sparsity of A makes the sizes of the rows vary and

in order to distribute it we created a matrix B with number of columns equal to the max-

imum number of nonzero elements in rows of A. We aligned rows of B with q and copied

A to B row by row. This eliminated replication of A, however resulted in 20% slower code.

The profile of CG is shown in Figure 7. The matrix vector multiplication scales down

well. The daxpy operations of a replicated p with distributed vectors r and z scale up dis-

torting performance on 32 processors. An explicit replication of p slows the program

down. An algorithm for matrix vector multiplication which does not require a redistribu-

tion is given in [10]. This algorithm communicates partial sums of the matrix vector prod-

uct according to a special schedule which can not be expressed in HPF.

18

w_ ...

10

_ mgHPF

"_:"_"r>_ - -e-- daxpy
"" _-_Z"--_ ...A... redsum

"_ -*--- sparseMV

1.. :.-.,. ..

I0 . : ..
-g, _#

i..- o

0 :.=........... .'.-..'..7.'.'..-... ::::,,
10 - ,,

.................... fit _ "'"

-1

10
10 °

Number of processors

FIGURE 7. CG profile on SGI Origin 2000

4.6 MG benchmark

MG benchmark performs iterations of V-cycle multigrid algorithm for solving a dis-

crete Poisson problem Vu = v on a 3D grid with periodic boundary conditions [2]. Each

iteration consists of evaluation of the residual:

r = v-Au

and of the application of the correction:

u = u+Mr

where M is the V-cycle multigrid operator.

The V-cycle starts from a solution on the finest grid, computes the residual and

projects it onto more and more coarse grids (down step). On the coarsest grid it computes

an approximate solution by smoothing the residual (ps £nv subroutine), interpolates the

19

solution onto a finer grid, computes the residual and applies the smoothing on the finer

grid (up substep). In a few interp-res id-ps inv substeps the V-cycle finishes with an

updated solution on the finest grid.

To implement MG in HPF we introduced a 4 dimensional array and mapped grids

into 3D sections of this array with a fixed value of the last dimension. We used 1D BLOCK

distribution of the array in z-direction. The projection, interpolation, smoothing and com-

putation of the residual act at each grid point independently. 2D or 3D partitions would

reduce the number of cuts in the array and would reduce the number of messages. On

practice, however 2D partition resulted in a slightly slower code and 3D partition in a sig-

nificantly slower code.

The HPF implementation of MG stretches the limits of pghpf in few respects. First,

the number of grids and their sizes vary depending on the benchmark class. In order to

be able to implement a loop over the grid we need an array of pointers to arrays. This fea-

ture is not implemented in the version of pghpf compiler which we used. As a work

around we introduced the 4D array and used its last dimension as a grid pointer. The

overhead of this is allocation of significantly larger memory than actually is used. (In the

original f77 version 3d arrays are packed into a 1D array and are referred to by the ad-

dress of the first elements.)

Second, the residual and the smoother subroutines work on the same gird perform-

ing convolutions with 3x3x3 kernels. This operation requires access to non local sections

of data and results in a poor scalability of these two subroutines, see MG profile on

Figure 9. We tried to use an array syntax for implementation of these convolutions but

could not get any speed up.

The projection and the interpolation subroutines work with a pair of grids one of

which is a refinement of another. Using the same block distribution for all grids collapses

the coarsest grids onto a smaller number of processors. It inhibits access to the appropri-

ate portions of the coarser grid. The projection and the interpolation subroutines involve

2O

the shuffling operations with grids:

u(2"ii-1,2"i2-i,2"i3-i) = u(2"ii-I,2"i2-i,2"i3-i)

z(il,i2,i3)

u(2"ii,2"i2-i,2"i3-i) = u(2*il,2*i2-1,2*i-

l)+z(il+l,i2,i3)+z(il,i2,i3))

+

The compiler was not able to parallelize the loop with the shuffling operation in the body

because of complex index expressions (according to the compiler's message). We have

used the array syntax and ONHOME clause for parallelization, see Figure 8.

!hpf$ align wOll(il,i2,i3) with u(2"ii,2"i2-1,2"i3-i)

!hpf$ align wlll(il,i2,i3) with u(2"ii-I,2"i2-I,2"i3-i)

wlll(l:mm!-l,l:mm2-1,1:mm3-1 = z(l:mml-l,l:mm2-1,1:mm3-1)

wOll(l:mml-l,l:mm2-1,1:mm3-1 =

> z(l:mml-l,l:mm2-1,1:mm3-1) + z(2:mml,l:mm2-1,1:mm3-1)

!hpf$ independent, on home(wOll(il i2,i3))

do i3=l,mm3-1

do i2=l,mm2-1

do il=l,mml-i

u(2"ii,2"i2-!,2"i3-i) =

end do

end do

end do

!hpf$ independent, on home(wlll(il,i2,i3))

do i3=l,mm3-1

do i2=l,mm2-1

do il=l,mml-i

u(2*il,2*i2-1,2*i3-1)+wOll(il,i2,i3)

u(2"ii-i,2"i2-i,2"i3-i) = u(2*il-l,2*i2-1,2*i3-1)+wlll(il,i2,i3)

end do

end do

end do

FIGURE 8. Implementation of the shuffling with on HOME clause

The profile of MG (see Figure 9) shows that the smoothing and the residual operators

are not scaled well. These operators are not factored and require communications to ac-

cess grid points distributed on different processors.

21

10

10

10

3

i &

...•........

0
10

10° 101

Number of Processors

FIGURE 9. MG profile on SGI Origin 2000

5. Comparison with MPI version of NPB2.3

The timing results of the benchmarks are summarized in Table 2 and the plot is

shown in Figure 10. As a reference we use time of the MPI version reported on NPB home

page. The HPF version is consistently slower than MPI version. The lower performance

of HPF versions results from two main sources: a single node code HPF code runs slower

and it does not scale as well as MPI code.

A comparison of single process performance of pghp f compiled code versus f77 code

shows that former generates about 2 times slower code than latter. Since we did not do

any code modifications which would change the total operations count or would distort

any array layout in the memory (MG is an exclusion), we would account this slowdown

to the compiler introduced overhead and cost of the redistribution. (The redistribution on

single processor consumes less then 10% of the computational time.)

Processor utilization in HPF code is not as efficient as in MPI versions (NPB 2.3) for

two reasons. HPF versions require an extra redistribution of big arrays and the redistri-

22

bution does not scale down well. In the version of the compiler which we had the REDIS-

TRIBUTE statement had not been implemented. Implementation of this directive would

allow to organize computations in BT and SP in the following sequence

x_solve, y_solve, z -> y redistribution, z_solve,

x_solve, y -> x redistribution, y_solve, z_solve, x -> z redistribution, ...

This would require 3 redistributions per 2 iterations instead of current 4 and would re-

duce redistribution overhead by a factor of 3/4. The redistribution was the main reason

of flattening performance between 16 and 32 processors in BT, SP and FT. An efficient im-

plementation of redistribution would improve scalability of these benchmarks. In the

HPF 2.0 language specification, however, the status of REDISRIBUTE was changed from

the language statement to an approved extension, see [7], probably because of difficulties

with the implementation.

23

TABLE 2. Benchmarks time on SGI Origin 2000(sec)

Nprocs

BT.A pghpf 2.4

BT.A NPB2.3

SP.A pghpf 2.4

SP.A NPB2.3

LU.A pghpf 2.4

LU.A NPB2.3

FT.A pghpf 2.4

FT.A NPB2.3

3911.3

2611.0

3302.9

1638.4

3285.2

1741.5

132.8

1865.4

1629.4

2277.8

795.0

116.8

85.8

921.1

731.5

861.2

352.6

1350.4

308.2

58.1

44.4

8 9

469.7

416.1

752.7

144.3

38.1

23.1

CG.A pghpf 2.4 64.37 34.64 17.32 8.99

CG.A NPB2.3 36.4 20.7 9.6 4.4

MG.A pghpf 2.4 162.09 135.97 93.65 59.25

MG.A NPB2.3 52.7 30.0 15.0 7.6

314.0

371.6

142.0

16

273.6

16114

248.4

79.1

462.4

67.4

20.1

11.8

7.72

2.6

39.31

4.0

25 32

174.0

91.9

175.7 158.9

46.2

755.6

33.8

14.0

6.3

12.5

1.6

29.46

2.1

24

I0

!

I0 ' -

lo0 Io_

1o

1

lO............................ _"
-o

"o

.... i

10o 10_

lO

..:_-,,:,,_..
10 "'-

10

lO

FTdu$ A]

1.-_ p_pf2.4 1
- /-_ NPB23 /
"'.-.:... l , " _

10° 101 I...0o I0l
2..i...lO3

I0

lO

i CG C_m A

.... u

I010o I01

102

lO

,ooo

._MG C'ms A I

$I_t.4 /

FIGURE 10. HPF versus MPI time for class A on SGI Origin 2000

25

6. Related Work and Conclusions

NPB are well recognized benchmarks for testing parallelizing compilers, parallel

hardware and parallelization tools [1],[11],[13]. These benchmarks contain important ker-

nels of aerophysics applications and may be used for early validation of various approach

to development of high performance CFD codes.

Performance results of HPF implementation of "pencil and paper" NPB specifica-

tions submitted by APR and Portland Group are reported in [13], see also

www.apri.com/apr_nasbench.html and www.pgroup.com/npb_results.htrnl. The com-

piler vendors know the implementation of operations with distributed arrays and may be

implicitly they have an HPF performance model. In some cases they use intrinsic custom-

ized HPF functions. It allows some pghp f compiled benchmarks to outperform hand-

written MPI versions of NPB on CRAY T3D and CRAY T3E. Neither implementation has

a version of LU benchmark. In APR's implementation of MG a proprietary HPF directives

set is used. The Portland Group FT implementation uses some HPF intrinsic functions

customized for the benchmark.

The portability and scalability of HPF programs are studied in [11]. EP, FT and MG

are used for comparison of a number of compilers, MPI and ZPL (a data parallel language

developed at the University of Washington) implementations. One of the conclusions is

that a consistent HPF performance model is important for scalability and portability of

HPF programs. In the paper they regret: "Unfortunately, a portable HPF version of these

(NPB) benchmarks is not available ..." and we hope that our paper provides a solution to

the problem.

Problems of analysis and code generation for data parallel program discussed in [1].

As an solution the authors developed an integer-set framework and implemented it in

dHPF environment. The framework was tested and profiled with SP, BT and LU.

A development of a large parallel application in an HPF programming paradigm

called Fx is reported in [14]. The authors showed that an air pollution model Airshild fits

into HPF programming paradigm and a good performance can be achieved on up to 64

processors of Cray T3D and Cray T3E. They also showed that the performance on differ-

ent machines and different number of nodes can be modeled in a simple way.

An HPF implementation of reservoir simulation is reported in [6]. Two compiler

26

were compared and good scalability results were achieved on a number of platforms.

Some other codes are used for testing of HPF compiler performance as well: CG 2D solver

and Shallow Water code from NCAR: www.digital.com/info/hpc/fortranS.

HPF gives a user a high-level programming language constructs for expressing par-

allelism existed in a sequential code. It allows to port a sequential code to a parallel envi-

ronment with a moderate effort and results in a well structured parallel program. The

machine architecture can be accounted for by using appropriate lower level message

passing library as specified by -lVImpi, -Msmp or -Mrmp flags to pghpf compiler and re-

quires a minimal effort from the user.

The hiding of distributed array handling results in uncertainty of the overhead of

primitive operations with distributed arrays. Currently there is no HPF language con-

structs which can convey this overhead to the user. For example, data movement between

processors can not be expressed in terms of HPF language. The problem is softened by

pghpf compiler directives -Minfo and -Mkeepftn as well as by pgprof ability to

show message size and number. A clear performance model of handling distributed ar-

rays would allow the user to steer the code to a better performance.

The HPF model of parallelism appears to be adequate for expressing parallelism ex-

isted in BT, SP and FT with one exception. Due to inability of HPF organize pipelined

computations an extra 3D array redistribution were required in each of these bench-

marks. The concurrency regions of LU benchmark are planes normal to the grid diagonal

and a nontrivial code modifications were required to express the parallelism.

At the current level of HPF compiler maturity it generates code which runs about 2

times slower on a single processor than the original serial code. On multiple processors

the code speeds up almost linearly until the point where the redistribution creates a sig-

nificant overhead. We have plans to implement ARC3D code in HPF and evaluate perfor-

mance and portability of the benchmarks compiled with other HPF compilers.

Acknowledgments: The authors wish to acknowledge NAS scientists involved in the

effort of parallelization of NAS benchmarks: Maurice Yarrow, Michelle Hribar, Abdul

Waheed and Cathy Schulbach. Insight to pghp£ implementation of distributed array op-

erations was provided by Douglas Miles and Mark Young from Portland Group. The

27

work presented in the paper is supported under NASA High Performance Computing

and Communication Program.

References

[1] V. Adve, J. Mellor-C_mmey. Using Integer Sets for Data-Parallel Program Analysis and Optimization. To

Appear in Proceedings of the SIGPLAN'98 Conference On Programming Language Design and Imple-
mentation, June 98.

[2] D. Bailey, T. Harris, W. Sahpir, R. van der Wijngaart, A. Woo, M. Yarrow. The NAS Parallel Benchmarks

2.0. Report NAS-95-020, Dec. 1995. htt-p://science.nas.nasa.gov/Software/NPB

[3] E. Barszcz, R. Fatoohi, V. Venkatakrishnan, S. Weeratunga. Solution of Regular, Sparse Triangular Linear

Systems on Vector an Distributed-Memory MuItiprocessors. NAS report RNR-93-O07, April 1993.

[4] J-Y. Berhou, L. Colomert. Which approach to paraUelizing scientific codes - That is a question. Parallel Com-

puting 23(1997) 165-179.

[5] M.Frumkin, M. Hribar, H. Jin, A. Waheed, J. Yan. A Comparison of Automatic Parallelization Tools�Compil-

ers on the SGI Origin 2000 using NAS Benchmarks. Abstract will be published at SPDT'98.

[6] K. Gary Li, N. M. Zamel. An Evaluation of HPF Compilers and the Implementation of a Parallel Linear equa-

tion Solver Using HPF and MPLTechnical paper presented at Supercomputing 97, November 97, San
Jose, CA.

[7] High Performance Fortran Language Specification. High Performance Fortran Forum, Version 2.0, CRPC-

TR92225, January 1997, http://www.crpc.rice.edu/CRPC/softlib/TRs_online.html

[8] C.H. Koelbel, D.B. Loverman, R. Shreiber, GL. Steele Jr., M.E. Zosel. The High Performance Fortran Hand-
book. MIT Press, 1994.

[9] C.H. Koelbel. An Introduction to HPF 2.0. High Performance Fortran - Practice and Experience. Tutorial

Notes of Supercomputing 97. November 97, San Jose, CA.

[10] J.G. Lewis, R.A. van de Geijn. Distributed Memory Matrix-Vector Multiplication and Conjugate Gradient

Algorithms. Supercomputing'93, Proc. Portland, OR, Nov. 15-19, 1993, pp. 484-492.

[11] T. Ngo, L. Snyder, B. Chamberlain. Portable Performance of Data Parallel Languages. Tech_uical paper pre-

sented at Supercomputing 97, November 97, San Jose, CA.

[12] The Portland Group. pghpfReference Manual. February 1997.http://www.pgroup.com/ref_manual/

hpfref.htm. 142 pp.

[13] S. Saini, D. Bailey. NAS Parallel Benchmark (Version 1.0) Results 11-96. Report NAS-96-18, November
1996.

[14]J. Subholk, P. Steenkiste, J. Stichnoth, P. Lieu. Airshild Pollution Modeling: A Case Study in Application

Development in an HPF Environment. IPPS/SPDP 98. Proceedings. Orlando, March 30- April 3, 1998, pp.
701-710.

28

Title:

I%IAS

Author(s): Michael Frumkin,
Robert Hood,

Jerry Yan

Reviewers:

"I have carefully and thoroughly reviewed
this technical report. I have worked with the
author(s) to ensure clarity of presentation and
technical accuracy. I take personal responsi-
bility for the quality of this document."

Signed:

Name:

Signed:

Name:

Branch Chief:

Approved:

Date: NAS ReportNumber:

16

